
Over-smoothing and diffusion dynamics on

graphs

Master Thesis

University: Imperial College London
Departement: Mathematics
Supervisor: Jeroen Lamb
Date: September 2023
Student name: Jean Adrien Lagesse
Student CID: 02331224

Abstract

Over-smoothing is a recurrent problem when working with Graph Neural Networks
that severely limits the expressiveness of well-known architectures. In this report
we have gathered from different papers a mathematically tractable definition of this
problem, we proposed a proof of the exponential over-smoothing of the isotropic
diffusion equation on graphs and generalized it to anisotropic positive diffusion dy-
namics. To prove these theorems, we introduced different pseudo-Euclidean spaces
adapted to measure over-smoothing in different use cases. Finally, we implemented a
fast GPU-optimized algorithm based on the Graph Fourier transformation to analyze
in practice this phenomenon for Erdos-Rényi random graphs.

1

Integrity statement on plagiarism

The work contained in this thesis is my own work unless otherwise stated.

Acknowledgment

I would like to thank Professor Jeroen Lamb and Victoria Klein for their help and
guidance.

2

Notations

G = (V,E): A simple connected undirected graph with vertices set {1, ..., V } and
edges in {1, ..., V }2.

X l(G): The set of all l-dimensional signals on the vertices of the graph G, associating
every vertex with a vector in Rl.

Hl(G): The set of all l-dimensional signals on the edges of the graph G, associating
every edge with a vector in Rl. The signals on G are alternating: if ϵ ∈ Hl(G) and
(i, j) ∈ E,then ϵ(i, j) = −ϵ(j, i).

i ∼ j: The vertices i and j are neighbours in G (i.e. (i, j) ∈ E).⊕
: Aggregation operator.

A: Adjacency matrix of the graph G.

∆: Laplacian of the graph G.

∆̄: Normalized Laplacian of the graph G.

∆̃: Normalized augmented Laplacian of the graph G.

E∆(X): Dirichlet Energy associated with the Laplacian ∆ of a signal X ∈ X l(G) on
the graph G.

E∆̄(X): Dirichlet Energy associated with the normalized Laplacian ∆ of a signal
X ∈ X l(G)

E∆̃(X): Dirichlet Energy associated with the augmented normalized Laplacian ∆ of
a signal X ∈ X l(G) on the graph G.

ES(X): Dirichlet Energy associated with the symmetric positive semi-definite matrix
S of a signal X ∈ X l(G) on the graph G.

< X,Y > = tr(XTY): inner product on X l(G)

3

||X||2: L2 vector norm.

||M||2: Matrix norm associated with the L2 vector norm. ||M ||2 = max||X||2=1 ||MX||2

< X,Y >S = tr(XTSY): pseudo inner product induced by a symmetric, positive,
semi-definite matrix S.

||M||S: Matrix norm associated with the Dirichlet energy. ||M ||S = supES(X)=1ES(MX)

X̂: Graph Fourier Transform of a signal X ∈ X l(G)

M̂: Graph Fourier Transform of the matrix M .

λ1 ≤ ... ≤ λV: Eigenvalues of the symmetric matrix S order in ascending order. If
which matrix S is not clear, we write λi(S).

λmin, λmax: Smallest and largest eigenvalue of a symmetric matrix.

Ẋ(t): time derivative of X

4

Contents

1 Introduction 6

2 Graph Neural Network 7
2.1 Graphs and signals on graphs . 7
2.2 Architecture . 7
2.3 Optimization and training of a Graph Neural Network 7
2.4 Aggregation function . 8
2.5 Building a Graph Neural Network by stacking layers 8
2.6 Classification of Graph Neural Network architectures 9
2.7 From discrete layers to continuous layers 10

3 Properties and limitations of Graph Neural Networks 12
3.1 Importance of deep Graph Neural Networks 12
3.2 Limitations of deep Graph Neural Networks 12

4 Spectral Graph Theory and Dirichlet Energy 15
4.1 Common definitions . 15
4.2 Properties of the Laplacian . 17
4.3 Fourier Transform on Graphs . 19
4.4 Dirichlet Energy . 20

5 A mathematical approach of over-smoothing 26
5.1 A tractable definition of over-smoothing 26
5.2 Graph Convolution Networks . 27
5.3 Over-smoothing and isotropic diffusion 28

6 Diffusion on graphs 30
6.1 The diffusion equation . 30
6.2 Anisotropic and isotropic diffusion on the graph 32

7 GPU implementation and practical analysis 35

5

1 Introduction

With the fast rise of Machine Learning finding new architectures that work for new
data types has been a priority. The classical data types have always been Euclidean:
text data can be seen as a 1-dimensional, images are 2-dimensional, etc... Yet, for
many problems, Euclidean data types are not very well suited. Graphs being a very
well-known and powerful data structure in computer science it was very natural to
use it in several problems. The paper (Scarselli et al. [9]) presented the Graph Neu-
ral Network architecture. Since then, improving the original Graph Neural Network
architecture has been a problem that many researchers are working on.

In the past few years, hundreds of different architectures for Graph Neural Networks
have been presented, most of them can be classified into three categories:

1. Graph Convolution Network: These architectures can be seen as a generaliza-
tion of the Convolution Neural Networks used mainly in Computer Vision to
Graphs. They are based on an approximation of convolutions on graphs (Kipf
et al. [7]).

2. Graph Attention Networks: These architectures can be seen as a generalization
of the transformers used mainly in Natural Language Processing to graphs
(Veličković et al. [11]).

3. Message Passing Neural Networks: A strictly more powerful architecture than
the Graph Attention Network (Gilmer et al. [5]).

The evolution of Graph Neural Networks closely follows the rest of the Machine
Learning field. Several ideas first implemented in Computer Vision and Natural
Language processing have been implemented in Graph Neural Networks. In this re-
port, we are particularly interested in the Residual Connection Networks paper (He
et al. [6]) that was later used to define the Neural Ordinary Differential Equation
Network architecture (Chen et al. [3]) and enables the use of continuous-time pro-
cesses as Neural Networks. These two papers enable us to consider the discrete layers
of a Graph Neural Network as a continuous function which simplifies the study of
the dynamics on the graph.

6

2 Graph Neural Network

2.1 Graphs and signals on graphs

Let’s consider a graph G = (V,E) where the vertices are numbered from 1 to V and
where the edges in E are the pairs (i, j) for some (i, j) ∈ {1, ..., V }2, moreover we
consider that the graph is simple, undirected and connected.

On this graph G, we will assign features to each vertex, those features are vectors
of a fixed size l, hence, we can represent all the features of the graph as a V × l
matrix that we will call X. We say that X is an l-dimensional signal on G and we
call X l(G) the set of all l-dimensional signals.

Similarly, we can assign features to the edges of G. Let ϵ : {1, ..., V }2 −→ Rl such
that for all (i, j) ∈ {1, ..., V }2, ϵ(i, j) = −ϵ(j, i), and such that if (i, j) ̸∈ E then
ϵ(i, j) = 0. We say that ϵ is an l-dimensional edge signal on G and we call Hl(G) the
set of all l-dimensional edge signals.

2.2 Architecture

In the most general definition, a graph neural network is a function Hθ parameterized
by θ, that takes as input a graph G with an lin-dimensional signal Xin and outputs
an lout-dimensional signal. Moreover, the function Hθ should be able to take any
graph G as its input but we will require that lin and lout (the number of features we
have per vertices) stay the same.

A graph neural network is a type of Neural Network that takes as an input a graph
and gives back another graph. A key element of Graph Neural Networks is that
the same network can be used on graphs of different structures and different sizes,
whereas classical neural networks have a fixed vector size as an input. This is very
useful when working on heterogeneous data such as molecules: each molecule has a
different number of atoms and covalent bonds, making it very hard to have a fixed
vector size representation.

2.3 Optimization and training of a Graph Neural Network

Let’s consider that we have a training set X = (Gi, Xi)i∈{1,...,N} consisting ofN graphs
and N lin-dimensional signals. Moreover, we have Y = (Gi, Yi)i∈{1,...,N} consisting

7

of N graphs and N lout-dimensional signals. Our aim is to find the optimal θ∗ such
that Hθ∗ predict for each i ∈ {1, ..., V } Yi from Xi. In practice, we try to solve:

θ∗ = argmin
θ

N∑
i=1

L(Hθ(Xi, Gi), Yi) + Lreg(θ) (1)

where L is a loss function and Lreg is a regularization penalty.

When the function Hθ is differentiable, the usual choice to find an approximate
solution of 1 is to use the stochastic gradient descent algorithm.

2.4 Aggregation function

The most important requirement is that our function H work on a graph of any
structure i.e. with a different number of vertices and different edges, moreover we
want to use this structure as it carries information about the data on which we are
working. Intuitively, we want to learn the output feature of a vertex by analyzing
its neighbourhood in the graph; to be able to extract this information, we need an
aggregation function, this function will take an arbitrary number of neighbours of a
vertex and aggregate it into a fixed size vector, in the rest of the report, this aggrega-
tion function will be denoted as

⊕
, and will aggregate any number of feature vector

{v1, ..., vm} into another vector
⊕m

i=1 vi. To make sense, the aggregation function
must be invariant under permutation because there is no canonical order of vertices
in a graph, hence for a permutation σ, we must have that

⊕m
i=1 vi =

⊕m
i=1 vσ(i).

This function will compute a representation of the neighbourhood of a vertex. Let
{v1, ..., vm} be vectors in Rl, here are a few examples of aggregation functions:

•
⊕m

i=1 vi =
1

m

∑m
i=1 vi

•
⊕m

i=1 vi = (max(v1[1], ..., vm[1]), ...,max(v1[l], ..., vm[l])
T

•
⊕m

i=1 vi = (min(v1[1], ..., vm[1]), ...,min(v1[l], ..., vm[l])
T

2.5 Building a Graph Neural Network by stacking layers

Now that we have defined the aggregation function, we can give a general formula
for the function H. Let’s consider linput = l0, l1, ..., lN = loutput the dimension of the
input signal, output signal and intermediate signals that we will use. We will also
break down the function H in several layers such that H = h0 ◦ ...◦hN−1, where each

8

layer hi will take as an input the graph G and it’s li-dimensional signal Xi ∈ X l
i (G)

and output a new li+1-dimensional signal Xi+1 ∈ X l
i+1(G)

Now we will give the general formula for each layer, let’s consider the layer hk that
takes as an input Xk and outputs Xk+1, we will denote x

(k)
j the feature vector associ-

ated with the jth vertices in Xk. The function hk is composed of two parameterized
functions γ(k) and ϕ(k) (usually multi-layer perceptrons) and we can compute the new
signal Xk+1 with the following formula:

x
(k+1)
i = γ(k)(x

(k)
i ,
⊕
j∼i

ϕ(k)(x
(k)
i , x

(k)
j))

Figure 1: Visualization of the layers of a Graph Neural Network: We can see a
graph G with a feature matrix of dimension V × li as li graph with a feature matrix
of dimension V × 1, each of these graph represents a different learned information.
(source: Thomas Kipf - Deep learning with graph-structured representations)

2.6 Classification of Graph Neural Network architectures

In the literature, many different Graph Neural Networks architectures have been
presented, however most of them can be classified in the following way:

9

Definition 1 (The expressive power of Graph Neural Networks). .

• Convolution Graph Neural Networks: this architecture is the simplest
and is described by the following equation for each layer:

x
(k+1)
i = γ(k)(x

(k)
i ,
⊕
j∼i

Hi,jx
(k)
j)

N.B: H a matrix.

• Graph Attention Networks: this architecture is in between the Convolution
Graph Neural Network and the Message Passing Neural Network, rather than
simply aggregating the features, we will perform a weighted aggregation:

x
(k+1)
i = γ(k)(x

(k)
i ,
⊕
j∼i

a(k)(x
(k)
i , x

(k)
j)x

(k)
j)

N.B: The function a(k) compute a weight in R.

• Message Passing Neural Networks: this architecture is the more general
and the more expressive, for each pair of features we will compute a completely
new feature to be aggregated. It is the same equation as in the previous section:

x
(k+1)
i = γ(k)(x

(k)
i ,
⊕
j∼i

ϕ(k)(x
(k)
i , x

(k)
j))

Each one of those architectures or more powerful than the previous one, however,
this complexity comes at a cost. Indeed, as the neural network gets more expressive,
it is harder to train. Nevertheless, depending on the characteristics of the data on
which we are working, using a more expressive model can be required.

2.7 From discrete layers to continuous layers

Residual Networks (He et al. [6]) were first introduced in Computer Vision to have
a better propagation of the gradient in the Neural Network (useful for the stochastic
descent algorithm). Applying this to Graph Neural Networks means to parameterize
differently the layer-wise equation:

x
(k+1)
i = x

(k)
i + γ(k)(x

(k)
i ,
⊕
j∼i

ϕ(k)(x
(k)
i , x

(k)
j))

10

In Neural Ordinary Differential Equations (Chen et al. [3]), it was suggested that
for Residual Networks, it is possible to consider that the Neural Network layers are
continuous. Applying this to the Graph Neural Network architecture yields to the
following differential equation:

ẋi(t) = γ(t)(xi(t),
⊕
j∼i

ϕ(t)((xi(t), xj(t))) (2)

With this formalism t 7→ γ(t) and t 7→ ϕ(t) assigns to each t a parameterized func-
tion. Ways to build and optimize those function are presented in (Chen et al. [3])
but are not relevant to the rest of this report.

The equation 2 is linked to the Message Passing Neural Network update equation by
the Euler discretization scheme, for τ = 1 we have:

xi(t+ τ)− xi(t)

τ
= γ(t)(xi(t),

⊕
j∼i

ϕ(t)((xi(t), xj(t)))

xi(t+ τ) = xi(t) + τγ(t)(xi(t),
⊕
j∼i

ϕ(t)((xi(t), xj(t)))

xi(t+ 1) = xi(t) + γ(t)(xi(t),
⊕
j∼i

ϕ(t)((xi(t), xj(t)))

Hence, we can see that discrete and continuous layers follow the same dynamics when
the number of layers is big (i.e. when τ is small).

11

3 Properties and limitations of Graph Neural Net-

works

3.1 Importance of deep Graph Neural Networks

Deep Learning is a sub-field of Machine Learning where several layers are stacked
one after each other, using deep learning enables learning very complex relationships
in the data and has resulted in state-of-the-art methods in several domains such as
Computer Vision and NLP. Empirically, it has been shown that large and deep mod-
els perform better than shallow models. Large Language Models consist of tens of
layers (Touvron et al. [10]) and image recognition architectures can rise to hundreds
of layers (He et al. [6]).

In Graph Neural Networks, having many layers has another important role:

Theorem 1.— Consider a Graph Neural Network with N layers, the output feature
of a vertex v depends exactly on the features of all the vertices at a distance of N or
less to v.

Hence, to be able to learn interactions between long-distance vertices, it is neces-
sary to have very deep Graph Neural Networks. However, several problems arise
when considering deep GNN architectures. We will investigate those problems by
considering the dynamics on the graph in the following parts of the report.

3.2 Limitations of deep Graph Neural Networks

Definition 2. Graphs can be classified in two main categories:

• Homophilic graphs: We call a graph homophilic if we expect that neighbor-
ing vertices will share the same features. An example of such graphs is social
media graphs: if two persons are friends on a social network (i.e are neighbors
in the friendship graph) we can expect that they will share the same features
such as location, political views, etc...

• Heterophilic graphs: We call a graph heterophilic if we expect that neigh-
boring vertices don’t share the same features. An example of such graphs is
the graph representation of a molecule (i.e the graph where vertices are atoms
and edges represent the covalent bonds), indeed, in molecules, very different
atoms share covalent bonds hence they will have different features.

12

Figure 2: Visualization of heterophilic and homophilic graphs.
(source: https://graphml.substack.com/p/gml-newsletter-homophily-heterophily)

On homophilic graphs simple models such as a Graph Convolutional Network can
yield very good results, however, on heterophilic graphs, the neural network cannot
distinguish vertices that are similar to one another from the ones that should share
very different features, hence, during the aggregation step all this information is lost
and this yields to an output graph that is very smooth (neighboring nodes are very
similar): that problem is commonly known as over-smoothing.

Figure 3: Unwinding of the layers of a Graph Neural Network from the point of
view of a single vertex. (source: https://medium.com/neuralspace/graphs-neural-
networks-in-nlp-dc475eb089de)

Over-smoothing can also arise from very deep Graph Neural Networks, as seen in 3,

13

the vertices present when unwinding the Graph Neural Network are often repeated,
hence when we have many layers, the information learned about a vertex is nearly
the same as the its neighbours, resulting in over-smoothing.

In addition to over-smoothing, another well know problem when using Graph Neural
Network is bottlenecks. As we can see in 3, with only a few layers and a few
neighbouring vertices, the information that a vertices contains is very packed, which
means that it is very hard for the neural network to use all the available information,
this can become quite a problem when there are very few edges connecting different
dense part of the graph, just as shown in 4.

Figure 4: On the left we can see that a bottleneck will appear, information will
difficultly flow between the right and left part of the graph. On the graph on the
right, because there is more edges connecting the two parts, the information will be
able to flow. (source: https://blog.twitter.com/engineering)

14

4 Spectral Graph Theory and Dirichlet Energy

To study Graph Convolution Networks and to prove that they are subject to over-
smoothing, we will need the formalism of Graph Spectral Theory, a subset of graph
theory that studies the relationships between the eigenvalues of the graph Laplacian
and properties of the graph. Most of the definitions are inspired by (Chung [4]),
however, based on the formula we used for the graph Laplacian, different properties
emerge.

In addition, we define a new pseudo-Euclidean space that is adapted to study the
Dirichlet energy of a graph. As we will see, the Dirichlet energy is linked to the
Laplacian and we generalize the definition of the Dirichlet Energy to other types of
graph Laplacians.

4.1 Common definitions

Let G = (V,E) be a simple connected undirected graph.

Definition 3 (Adjacency matrix). The adjacency matrix of G is a matrix A ∈
MV×V ({0, 1}) such that for i, j ∈ {1, ..., V }, Ai,j = 1 if and only is (i, j) ∈ E and
Ai,j = 0 otherwise.

The augmented adjacency matrix of G is Ã = A + Id ∈ MV×V ({0, 1}). It is the
adjacency matrix of G augmented with self-loops.

Definition 4 (Degree matrix). The degree matrix of G is the diagonal matrix
D = diag(d1, ..., dV) ∈ MV×V (N).

The augmented degree matrix of G is the diagonal matrix D̃ = diag(d1 + 1, ..., dV +
1) = D + Id ∈ MV×V (N). It is the degree matrix of G augmented with self-loops.

Definition 5 (Graph Laplacian). The graph Laplacian of G is the matrix ∆ =
D − A.

The normalized graph Laplacian of G is the matrix ∆̄ = D− 1
2 (D − A)D

1
2

15

The augmented normalized graph Laplacian of G is the matrix

∆̃ = D̃− 1
2∆D̃− 1

2

= D̃− 1
2 (D̃ − Ã)D̃− 1

2

= Id− D̃− 1
2 ÃD̃− 1

2

To have a a better intuition of how these operators act on a signal we can consider a
1-dimensional signal X ∈ RV on the graph G and let i ∈ {1, ..., V } be a vertex of G:

∆(X)i = (DX)i − (AX)i

= dixi −
∑
j∼i

xj

=
∑
j∼i

xi − xj

From that formula we can deduce:

∆̄(X) = D̄− 1
2∆D̄− 1

2X

= D̄− 1
2∆(

xi√
di
)i∈{1,...,V }

= D̄− 1
2 (
∑
j∼i

xi√
di

− xj√
dj
)i∈{1,...,V }

= (
1√
di

∑
j∼i

xi√
di

− xj√
dj
)i∈{1,...,V }

and also:

∆̃(X) = D̃− 1
2∆D̃− 1

2X

= D̃− 1
2∆(

xi√
di + 1

)i∈{1,...,V }

= D̃− 1
2 (
∑
j∼i

xi√
di + 1

− xj√
dj + 1

)i∈{1,...,V }

= (
1√

di + 1

∑
j∼i

xi√
di + 1

− xj√
dj + 1

)i∈{1,...,V }

16

4.2 Properties of the Laplacian

Theorem 2.— ∆, ∆̄ and ∆̃ are symmetric, positive semi-definite matrices.

Proof : The matrix D is diagonal hence it is symmetric, moreover, because G is
undirected, if (i, j) ∈ E then (j, i) ∈ E, hence A is symmetric. This proves that ∆
is symmetric.
In addition it is clear that D̄− 1

2 and D̃− 1
2 are diagonal, so we can say that they are

symmetric. Hence:

∆̄T = (D̄− 1
2∆D̄− 1

2)T = (D̄− 1
2)T∆T (D̄− 1

2)T = ∆̄

∆̃T = (D̃− 1
2∆D̃− 1

2)T = (D̃− 1
2)T∆T (D̃− 1

2)T = ∆̃

Now, let X = (xi)i∈{1,...,V } be a 1-dimensional signal on G:

XT∆X =
V∑
i=1

xi

∑
j∼i

xi − xj

=
V∑

i,j=1

Ai,jx
2
i − xixj

=
V∑

i,j=1

Ai,j
1

2
(xi − xj)

2 +
1

2
(x2

i − x2
j)

=
1

2

V∑
i,j=1

Ai,j(xi − xj)
2 ≥ 0

Based on this result, a same result can be found for ∆̄ and ∆̃:

XT ∆̄X = XT D̄− 1
2∆D̄− 1

2X = (D̄− 1
2X)T∆(D̄− 1

2X)

=
1

2

V∑
i,j=1

Ai,j(
xi√
di

− xj√
dj
)2 ≥ 0

XT ∆̃X = XT D̃− 1
2∆D̃− 1

2X = (D̃− 1
2X)T∆(D̃− 1

2X)

=
1

2

V∑
i,j=1

Ai,j(
xi√
di + 1

− xj√
dj + 1

)2 ≥ 0

17

Hence, ∆, ∆̄ and ∆̃ are semi-definite, however, we can prove that they are not
definite by considering X = (1)i∈{1,...,V } for ∆, X = (

√
di)i∈{1,...,V } for ∆̄ and X =

(
√
di + 1)i∈{1,...,V } for ∆̃. o.ε.δ.

Theorem 3.— The eigenvalues of ∆̄ are in [0, 2] and the eigenvalues of ∆̃ are in
[0, 2)

Proof : Because ∆̄ and ∆̃ are positive semi-definite (Theorem 1), every eigenvalues
are greater than 0. Now, let X be a 1-dimensional signal on G such that ||X||2 = 1,
then:

XT ∆̄X =
1

2

V∑
i,j=1

Ai,j(
xi√
di

− xj√
dj
)2

≤
V∑

i,j=1

Ai,j(
x2
i

di
+

x2
j

dj
)

=
V∑
i=1

x2
i +

V∑
j=1

x2
j ≤ 2

XT ∆̃X =
1

2

V∑
i,j=1

Ai,j(
xi√
di + 1

− xj√
dj + 1

)2

≤
V∑

i,j=1

Ai,j(
x2
i

di + 1
+

x2
j

dj + 1
)

=
V∑
i=1

di
di + 1

x2
i +

V∑
j=1

dj
dj + 1

x2
j < 2

Let λ be the largest eigenvalue of ∆̄, and let X be the associated eigenvector, then
XT ∆̄X = λXTX = λ ≤ 2.

Let λ be the largest eigenvalue of ∆̃, and let X be the associated eigenvector, then
XT ∆̃X = λXTX = λ < 2. o.ε.δ.

Definition 6 (Pseudo inner-product). Let a S be a symmetric positive semi-
definite matrix, the mapping <,>S: (X, Y) ∈ X l(G)2 7−→ tr(XTSY) ∈ R is the
pseudo inner-product associated with the matrix S.

18

Theorem 4.— Pseudo inner-product associated with the matrix S is indeed a pseudo
inner-product.

Proof : Let X, Y, Z be l-dimensional signal on G, then:

• Symmetry:

< X, Y >S= tr(XTSY) = tr((XTSY)T) = tr(Y TSX) =< Y,X >S

• Linearity: Let a, b ∈ R, then:

< aX + bY, Z >S = tr((aX + bY)TSZ) = a× Tr(XTSZ) + b× Tr(Y TSZ)

= a < X,Z >S +b < Y, Z >S

• Positive semi-definiteness: By applying the fact that S is a positive semi-
definite matrix it follows that:

< X,X >S= tr(XTSX) =
V∑

k=1

tr(XT
.,kSX.,k) ≥ 0 o.ε.δ.

By combining the definition of the pseudo inner product associated with a symmet-
ric, positive, semi-definite matrix and the results from theorem 2, we can consider in
the rest of the report the following pseudo inner products: < ., . >∆, < ., . >∆̄ and
< ., . >∆̃.

Hence we have defined on X l(G) three different pseudo-Euclidean structures. We
will prove that those spaces are very different but that they are useful for studying
different measures of over-smoothing on a graph.

4.3 Fourier Transform on Graphs

It will be useful in the rest of the paper to be able to perform the Fourier transform
of a signal X ∈ X l(G) associated with S ∈ {∆, ∆̄, ∆̃} . By theorem 3, we know that
the eigenvalues of S are positive, hence we can order them:

0 = λ1 ≤ ... ≤ λV

In (Chung [4]), it is proved that λ2 = 0 if and only if G is not connected, hence
λ2 > 0 in our case.

There exist a square matrix P such that S = P−1diag(λ1, ..., λV)P .

19

Definition 7 (Fourier transform on graphs). If X is a l-dimensional signal on
G, the Fourier transform of X is:

X̂ = PX

The Fourier transform is build so that the following diagram is commutative:

X l(G) X l(G)

X̂ l(G) X̂ l(G)

S

P

diag(λ1,...,λV)

P−1

Definition 8. Let M : X l(G) 7→ X l(G), then the Fourier transform of M is M̂ =

P ◦M ◦ P−1. In particular, if M is a squared matrix of dimension V , M̂ = PMP−1

This definition assures us that applying M in X l(G) is equivalent to applying M̂ in

X̂ l(G). Let X ∈ X l(G), then:

M̂X̂ = P ◦M ◦ P−1PX = PMX = M̂X

4.4 Dirichlet Energy

Definition 9 (Dirichlet Energy). Let X ∈ MV×l(R) be a l-dimensional signal on
the graph G. The Dirichlet energy of X associated with ∆, ∆̄ or ∆̃ are:

E∆(X) =

√√√√1

2

V∑
i,j=1

Ai,j ||Xi −Xj||22

E∆̄(X) =

√√√√1

2

V∑
i,j=1

Ai,j

∣∣∣∣∣
∣∣∣∣∣ Xi√

di
− Xj√

dj

∣∣∣∣∣
∣∣∣∣∣
2

2

E∆̃(X) =

√√√√1

2

V∑
i,j=1

Ai,j

∣∣∣∣∣
∣∣∣∣∣ Xi√

di + 1
− Xj√

dj + 1

∣∣∣∣∣
∣∣∣∣∣
2

2

20

Theorem 5.— The Dirichlet energy associated with S ∈ {∆, ∆̄, ∆̃} is the pseudo
norm associated to < ., . >S

Proof :

E∆(X)2 =
1

2

V∑
i,j=1

Ai,j ||Xi −Xj||22

=
1

2

V∑
i,j=1

Ai,j

V∑
k=1

xi,k − xj,k)
2

=
V∑

k=1

(
1

2

V∑
i,j=1

Ai,j(xi,kxj,k)
2)

=
V∑

k=1

tr(XT
.,k∆X.,k)

= tr(XT∆X) =< X,X >∆

E∆̄(X)2 =
1

2

V∑
i,j=1

Ai,j

∣∣∣∣∣
∣∣∣∣∣ Xi√

di
− Xj√

dj

∣∣∣∣∣
∣∣∣∣∣
2

2

=
1

2

V∑
i,j=1

Ai,j

V∑
k=1

(
xi,k√
di

− xj,k√
dj
)2

=
V∑

k=1

(
1

2

V∑
i,j=1

Ai,j(
xi,k√
di

− xj,k√
dj
)2)

=
V∑

k=1

tr(XT
.,k∆̄X.,k)

= tr(XT ∆̄X) =< X,X >∆̄

21

E∆̃(X)2 =
1

2

V∑
i,j=1

Ai,j

∣∣∣∣∣
∣∣∣∣∣ Xi√

di + 1
− Xj√

dj + 1

∣∣∣∣∣
∣∣∣∣∣
2

2

=
1

2

V∑
i,j=1

Ai,j

V∑
k=1

(
xi,k√
di + 1

− xj,k√
dj + 1

)2

=
V∑

k=1

(
1

2

V∑
i,j=1

Ai,j(
xi,k√
di + 1

− xj,k√
dj + 1

)2)

=
V∑

k=1

tr(XT
.,k∆̃X.,k)

= tr(XT ∆̃X) =< X,X >∆̃ o.ε.δ.

Definition 10. LetX be a l-dimensional signal onG: ÊS(X̂) =

√
tr(X̂Tdiag(λ1, ..., λV)X̂)

Theorem 6.— Let X be a l-dimensional signal on G:

ÊS(X̂) = ES(X)

Proof :

tr(X̂Tdiag(λ1, ..., λV)X̂) = tr(PXTP−1diag(λ1, ..., λV)PXP−1)

= tr(XTSXP−1P)

= tr(XTSX) o.ε.δ.

Moreover, using the Fourier transform, we have a very nice formula for the squared
Dirichlet energy. Let X be a 1-dimensional signal on G, then:

E2
S(X) =

V∑
i=1

λix̂i
2

We call the eigenvalues λ1, ..., λV the frequencies of the graph G. The energy of a
signal X directly depends of the frequencies that compose it.

Theorem 7.— It is possible to obtain a type of Cauchy Schwartz inequality for the
Dirichlet energy. Let S ∈ {∆, ∆̄, ∆̃}, then for X, Y ∈ X l(G):

|< X, Y >S| ≤ ES(X)ES(Y)

22

Proof : The proof of this inequality is very similar to the proof of the Cauchy-
Schwartz inequality. Let X, Y ∈ X l(G) and P : t ∈ R 7→< tX + Y, tX + Y >S.
Then, P (t) = t2E2

S(X) + 2t < X, Y >S +E2
S(Y) is a polynomial of degree two that

have at most one solution. Hence, 4 < X, Y >2
S −4E2

S(X)E2
S(Y) ≤ 0, so:

|< X, Y >S| ≤ ES(X)ES(Y) o.ε.δ.

Definition 11 (Matrix Norm associated to the Dirichlet Energy). Let S ∈
{∆, ∆̄, ∆̃}, we define the matrix pseudo-norm associated to ES for a matrix M as :

||M ||S = sup
ES(X)=1

ES(MX) ∈ R+ ∪ {+∞}

The positivity and the triangular inequality of this pseudo-norm result from the pos-
itivity and the triangular inequality of ES.

It is then clear that for a matrix M and signal X that we have:

ES(MX) ≤ ||M ||S ES(X)

Theorem 8.— Let P be the graph Fourier transform associated with S. ||M ||S <
+∞ if and only if the eigenvector of S associated to 0 is an eigenvector of M .

Proof : Let X be a 1-dimensional signal on G.

E2
S(MX) = Ê2

S(M̂X) = Ê2
S(M̂X̂)

=
V∑
i=1

λi(M̂X̂)2i

If X̂ = (X̂1, ..., X̂V)
T , then X̂ ′ = (X̂2, ..., X̂V)

T .

If M̂ = (ai,j)i,j∈{1,...,V } then M̂ ′ = (ai,j)i,j∈{2,...,V }

1. Suppose that the eigenvector of S associated to 0 is an eigenvector of M ,
and that ES(X) = 1. The first condition assures us that [1, 0, ..., 0]T is an

23

eigenvector of M̂ , hence:

E2
S(MX) =

V∑
i=1

λi(M̂X̂)2i

=
V∑
i=2

λi(M̂
′X̂ ′)2i

≤ λmax

V∑
i=2

(M̂ ′X̂ ′)2i

= λmax

∣∣∣∣∣∣M̂ ′X̂ ′
∣∣∣∣∣∣2
2

= λmax

∣∣∣∣∣∣M̂ ′
∣∣∣∣∣∣2
2

∣∣∣∣∣∣X̂ ′
∣∣∣∣∣∣2
2

E2
S(X) = 1 implies that for i ∈ {2, ..., V } X̂2

i ≤ 1

λi

, hence

∣∣∣∣∣∣X̂ ′
∣∣∣∣∣∣2
2
≤

V∑
i=2

1

λi

:= C2

This proves that:

||M ||S ≤
√
λmax

∣∣∣∣∣∣M̂ ′
∣∣∣∣∣∣
2
C

2. Define the series (X̂n)n∈N as X̂n =

(
n, 1√

λ2(V−1)
, ..., 1√

λV (V−1)

)T

. We see that:

E2
S(Xn) = Ê2

S(X̂n) = 0× n+
V∑
i=2

λi

(
1√

λi(V − 1)

)2

= 1

Suppose the eigenvector of S associated to 0 is not an eigenvector of M , hence
v1 = [1, 0, ..., 0]T is not an eigenvector of M̂ . Let v1 = [1, 0, ..., 0]T , v2 =
[0, 1, ..., 0]T ..., vV = [0, 0, ..., 1]T , then there exist k ∈ {2, ..., V } such that〈
M̂v1, vk

〉
:= α ̸= 0.

E2
S(MXn) ≥ λk(M̂X̂n)

2
k

24

Because the only coordinate that depends on n is the first one, there exist β
such that:

λk(M̂X̂n)
2
k = λk(αn+ β)2

n−→+∞−−−−−→ +∞

Hence ||M ||S = +∞ o.ε.δ.

Theorem 9.— We have the following relations:

E∆̄ = E∆ ◦D
1
2

E∆̃ = E∆ ◦ D̃
1
2

E∆̃ = E∆̄ ◦D− 1
2 ◦ D̃

1
2

Proof : Let X ∈ X l(G):

E2
∆̄(X) = tr(XTD− 1

2∆D
1
2X)

= tr((D− 1
2X)T∆(D

1
2X))

= E2
∆(D

1
2X)

E2
∆̃
(X) = tr(XT D̃− 1

2∆D̃
1
2X)

= tr((D̃− 1
2X)T∆(D̃

1
2X))

= E2
∆(D̃

1
2X)

E∆̃ = E∆ ◦ D̃
1
2

= E∆̄ ◦D− 1
2 ◦ D̃

1
2 o.ε.δ.

These formulas enable us to show that the pseudo Euclidean spaces associated with
each Laplacian are very different.

Theorem 10.— The norms E∆, E∆̄ and E∆̃ are not equivalent on a non-regular
graph.

Proof : Let v1 = (1)i∈{1,...,V }, v2 = (
√
di)i∈{1,...,V } and v3 = (

√
di + 1)i∈{1,...,V }, be-

cause the graph is not regular, v1, v2 and v3 are pair-wise not co-linear. These vectors
are the eigenvectors associated with 0 of ∆, ∆̄ and ∆̃.
Moreover, D

1
2v1 = v2 and D̃

1
2v1 = v3, hence by the theorem 8, we can deduce that

E∆ and E∆̄ are not co-linear and that E∆ and E∆̃. Similarly, it is easy to show that

v2 is not an eigenvector of D− 1
2 ◦ D̃ 1

2 , which concludes the proof. o.ε.δ.

25

5 A mathematical approach of over-smoothing

Several papers give different definitions of over-smoothing. We will use the defini-
tion introduced in (Rusch et al. [8]) and prove that the Dirichlet Energy introduced
earlier is indeed a vertex similarity measure. we will also extend the notion of over-
smoothing to Diffusion processes on graphs and show that the exponential conver-
gence of the Dirichlet energy is the right bound.

Moreover, we will show that only in the case of Graph Convolution Networks we
can have a bound for the Dirichlet energy. Indeed, as soon as we consider Residual
Graph Neural Networks, it is not possible.

5.1 A tractable definition of over-smoothing

Definition 12 (Vertex similarity measure). Let X be a l-dimensional signal on
the graph G, a vertex similarity measure is a function µ : X ∈ X l(G) 7→ R+ such
that:

1. µ(X) = 0 if and only if there exist a feature vector c ∈ Rl such that X =
(c)i∈{1,...,V } (i.e. every vertex share the same features).

2. µ(X + Y) ≤ µ(X) + µ(Y)

Theorem 11.— The mapping µ : X 7→ E∆(X) is a vertex similarity measure.

Proof : 1. Let X be an l-dimensional signal on the graph G such that µ(X) = 0,
this means that E2

∆(X) = 0, hence:

tr(XT∆X) = 0

1

2

V∑
i,j=1

Ai,j||Xi −Xj||22 = 0

This proves that for all (i, j) ∈ E, Xi = Xj, because G is connected this con-
cludes that there exists c ∈ Rl such that Xi = c for all i ∈ {1, ..., V }. Moreover
if this condition is respected it is clear that E2

∆(X) = 1
2

∑V
i,j=1Ai,j||Xi−Xj||22 =

0.

26

2.

µ(X + Y)2 =< X + Y,X + Y >∆

=< X,X >∆ +2 < X, Y >∆ + < Y, Y >∆

≤< X,X >∆ +2| < X, Y >∆ |+ < Y, Y >∆

≤< X,X >∆ +2
√
< X,X >∆

√
< Y, Y >∆+ < Y, Y >∆

= µ(X)2 + 2µ(X)µ(Y) + µ(Y)2

= (µ(X) + µ(Y))2

Hence, µ(X + Y) ≤ µ(X) + µ(Y) o.ε.δ.

We can slightly expand the notion of vertex similarity measure, only E∆ exactly
verifies this definition because of the first condition in the definition. If we keep only
the second condition, then E∆̄ and E∆̃ can be considered vertex similarity measures.
The difference is that the signals that minimize the energy are no longer equal on all
vertices but they still are the eigenvectors of λ1 = 0.

Definition 13 (Over-smoothing). We say that a series of l-dimensional signals
(X(n))n≥0 is over-smoothing with respect to a vertex similarity measure µ if µ(X(n)) =
O(λn) for some 0 < λ < 1.

Similarly, we say that (X(t))t≥0 is over-smoothing if there exist 0 < λ < 1 such that
µ(X(t)) = O(λt).

5.2 Graph Convolution Networks

The Graph Convolution Networks was introduced in (Kipf et al. [7]) and follows the
following update rule:

X(k+1) = σ((...(σ((Id− ∆̃)X(k)Wk,1)Wk,2)...)Wk,m)

N.B: σ(x) = max(0, x)

This definition is indeed in accordance with the classification of the different Graph
Neural Network architectures. For i ∈ {1, ..., V }:

(∆̃(X(k)))i = X
(k)
i −

∑
j∼i

X
(k)
j

√
di + 1√
dj + 1

27

Hence by defining:

Hi,j =

√
di + 1√
dj + 1

γ(k)(a, b) = σ((...(σ(b)Wk,1)Wk,2)...)Wk,m)⊕
j∼i

Xj =
∑
j∼i

Xj

We find that:

(∆̃(X(k)))i = γ(k)

(
X

(k)
i ,
⊕
j∼i

Hi,jX
(k)
j

)
In A note on over-smoothing for graph neural networks (Cai et al. [1]), the following
theorem is proved:

Theorem 12.— Suppose that the for all k and l ≤ m, λmax(Wk,mW
T
k,m) < 1, then

E∆̃(X
(k)) ≤ (1− λ2(∆̃))kE∆̃(X

(k)).

This result is a very strong result, however, it is not generalizable to Residual Graph
Convolution Networks and to Graph Neural Ordinary Differential Equation Net-
works. Hence to study over-smoothing for those architectures it is necessary to
simplify the problem.

In the proof of theorem 12 in (Cai et al. [1]), except from some technical points on
the function σ and some condition on the weights matrices Wk,l, the important point
revolves around the dynamics of X 7→ (Id − ∆̃)X and how the Dirichlet Energy
evolves under this dynamic. In the rest, we will study the continuous version of this
dynamic.

5.3 Over-smoothing and isotropic diffusion

Let S ∈ {∆, ∆̄, ∆̃}. We can view the dynamic X 7→ (Id − S)X as an Euler dis-
cretization scheme of the following process:

Ẋ(t) = −SX(t) (3)

28

where X(t) is a 1-dimensional signal on the graph G. We can prove that the Dirichlet
energy converge to 0 exponentially fast. By using the theorem 6, we have:

dE2
S(X(t))

dt
=

dÊ2
S(X̂(t))

dt

= 2 < X̂(t),
dX̂(t)

dt
>S

= −2 < X̂(t), ŜX̂(t) >Ŝ

= −2
V∑
i=1

λ2
iXi(t)

2

≤ −2λ2

V∑
i=1

λiXi(t)
2

= −2λ2E
2
S(X(t))

Similarly, we obtain:
dE2

S(X(t))

dt
≥ −2λVE

2
S(X(t))

Hence we have shown that the Dirichlet Energy converge exactly at an exponential
rate to 0 and that this rate depends on the frequencies of the graph G.

The diffusion defined in equation 3 is called the isotropic diffusion for a reason that
we will see in the next part.

29

6 Diffusion on graphs

The links between equation 3 on graphs and the formalism to a general form of
anisotropic diffusion on graphs is based on GRAND: Graph Neural Diffusion (Cham-
berlain et al. [2]). In this part, we generalize the notion of diffusion on graphs to the
three Laplacians, ∆, ∆̄ and ∆̃ and we study how the Dirichlet energy evolves with
time.

6.1 The diffusion equation

Let X l(G) = MV×l(R) be the set of all l-dimensional vertex signals on the graph G.
Let Hl(G) be the set of all l-dimensional edge signals on G. We define an edge signal
ϵ ∈ Hl(G) as a function (i, j) ∈ {1, ..., V }2 7→ ϵ(i, j) ∈ Rl such that:

1. (i, j) ̸∈ E =⇒ ϵ(i, j) = 0

2. ϵ(i, j) = −ϵ(j, i)

We can equip X l(G) and Hl(G) with an inner product. Let X, Y ∈ X l(G), and
h, g ∈ Hl(G)

⟨X, Y ⟩ = tr(XTY)

≪ h, g ≫ =
1

2

V∑
i,j=1

Ai,j ⟨h(i, j), g(i, j)⟩

In addition, we can define a gradient operator ∇ : X l(G) −→ Hl(G) and a divergence
operator div : Hl(G) −→ X l(G):

• For (i, j) ∈ {1, ..., V }2 and X ∈ X l(G), (∇X)i,j = Xi − Xj if (i, j) ∈ E,
otherwise (∇X)i,j = 0

• For i ∈ {1, ..., V } and ϵ ∈ Hl(G), div(ϵ)i =
∑

j∼i ϵ(i, j)

Theorem 13.— The ∇ operator and the div operator are adjoint:

⟨x, div(h)⟩ =≪ ∇x, h ≫

Let M : X l(G) × R+ −→ MV×V (R), such that M(x(t), t)i,i = 1 for every i ∈
{1, ..., V } and M(x(t), t)i,j = 0 if (i, j) ̸∈ E. It makes sense to consider the following
equation:

Ẋ(t) = div(M(X(t), t)∇X) (4)

We call the equation 4 the diffusion equation on the graph G.

30

Theorem 14.— By seeing the Laplacian matrix ∆ as a mapping from X l(G) to
itself, then ∆ = div(∇)

Proof : Let X be an l-dimensional signal on G.

div(∇X) = div((Ai,j(Xi −Xj))i,j∈{1,...,V })

= (
V∑
j=1

Ai,jAi,j(Xi −Xj))i∈{1,...,V }

= (
V∑
j=1

Ai,j(Xi −Xj))i∈{1,...,V }

= ∆(X) o.ε.δ.

The definition the gradient operator and the divergence operator can also be modi-
fied to obtain the normalized augmented Laplacian ∆̃.

Consider ∇̃ : X l(G) −→ Hl(G) and d̃iv : Hl(G) −→ X l(G):

• For (i, j) ∈ {1, ..., V }2 and X ∈ X l(G), (∇̃X)i,j =
Xi√
di+1

− Xj√
dj+1

if (i, j) ∈ E,

otherwise (∇̃X)i,j = 0

• For i ∈ {1, ..., V } and ϵ ∈ Hl(G), d̃iv(ϵ)i =
1√
di+1

∑
j∼i ϵ(i, j)

Theorem 15.— By seeing the normalized augmented Laplacian matrix ∆̃ as a
mapping from X l(G) to itself, then ∆̃ = d̃iv(∇̃)

Proof : Let X be an l-dimensional signal on G.

d̃iv(∇̃X) = d̃iv((Ai,j(
Xi√
di + 1

− Xj√
dj + 1

))i,j∈{1,...,V })

= (
1√

di + 1

V∑
j=1

Ai,jAi,j(
Xi√
di + 1

− Xj√
dj + 1

))i∈{1,...,V }

= (
1√

di + 1

V∑
j=1

Ai,j(
Xi√
di + 1

− Xj√
dj + 1

))i∈{1,...,V }

= ∆̃(X) o.ε.δ.

31

Similarly, we can also obtain the normalized Laplacian ∆̄. Consider ∇̄ : X l(G) −→
Hl(G) and d̄iv : Hl(G) −→ X l(G):

• For (i, j) ∈ {1, ..., V }2 and X ∈ X l(G), (∇̄X)i,j = Xi√
di

− Xj√
dj

if (i, j) ∈ E,

otherwise (∇̃X)i,j = 0

• For i ∈ {1, ..., V } and ϵ ∈ Hl(G), d̃iv(ϵ)i =
1√
di

∑
j∼i ϵ(i, j)

6.2 Anisotropic and isotropic diffusion on the graph

Definition 14 (Isotropic diffusion). We say that the diffusion equation is isotropic
when M = aId with a > 0.

Definition 15 (Anisotropic diffusion). We say that the diffusion equation is anisotropic
in every other case.

From the results seen before, we know that the isotropic diffusion leads to the ex-
ponential convergence of the Dirichlet energy to 0. We will study how changing the
matrix M modify evolution of the Dirichlet energy.

Theorem 16.— Let M be a symmetric matrix. div(M∆X) = ∆M with:

∆M = DM −M

DM = diag(
V∑
i=1

Mi,1, ...,
V∑
i=1

Mi,V)

Proof : Let X be a 1-dimensional signal on G and i ∈ {1, ..., V }:

∆M(X) = DMX −MX

= (
V∑
j=1

Mi,jXi −
∑
i∼j

Mi,jXj)i∈{1,...,V }

= (
M∑
j=1

Mi,j(Xi −Xj))i∈{1,...,V }

32

In addition, we have:

div(M∇X) = div(M(Ai,j(Xi −Xj))i,j∈{1,...,V })

= div((Mi,j(Xi −Xj))i,j∈{1,...,V })

= (
V∑
j=1

Ai,jMi,j(Xi −Xj))i∈{1,...,V }

= (
V∑
j=1

Mi,j(Xi −Xj))i∈{1,...,V }

o.ε.δ.

It is important to see that for a 1-dimensional signal X:

XT∆MX =
V∑
i=1

Xi

∑
j∼i

Mi,j(Xi −Xj)

=
V∑

i,j=1

Mi,j(X
2
i −XiXj)

=
V∑

i,j=1

Mi,j(
1

2
(Xi −Xj)

2 − 1

2
(X2

i −X2
j)

=
1

2

V∑
i,j=1

Mi,j(Xi −Xj)
2 − 1

2

V∑
i,j=1

Mi,j(X
2
i −X2

j) (5)

Let M be a symmetric matrix with positive coefficients, then equation 5 assures us
that ∆M is positive and semi-definite, hence only have positive eigenvalues.

Theorem 17.— Let ε > 0 and M : X 1(G) × R+ −→ MV×V (R+) be such that if
(i, j) ̸∈ E then Mi,j = 0 and if (i, j) ∈ E then Mi,j > ε. Then the Dirichlet energy
of a signal X : t 7→ X(t) that solves the equation:

Ẋ(t) = −div(M(X(t), t)∇X(t)) (6)

converge exponentially fast to 0.
If the matrix M verifies this condition we say that the diffusion equation is positive
anisotropic.

33

Proof : Following the same method as for the calculation of the Dirichlet energy
of the isotropic diffusion Ẋ(t) = −∆X(t), we find that:

dE2
∆M(X(t),t)

(X(t))

dt
≤ −2λ2(∆M(X(t),t))E

2
∆M(X(t),t)

(X(t))

However:

X(t)T∆M(X(t),t)X(t) =
V∑

i,j=1

Mi,j(X(t), t) ||Xi(t)−Xj(t)||22

≥ ε
V∑

i,j=1

Ai,j ||Xi(t)−Xj(t)||22

With this, we can deduce that λ2(∆M(X(t),t)) ≥ ελ2(∆) and that E∆M(X(t),t)
≥

√
εE∆.

Hence:
dE2

∆M(X(t),t)
(X(t))

dt
≤ −2ελ2(∆)E2

∆M(X(t),t)
(X(t))

Which implies:

E∆M(X(t),t)
(X(t)) ≤ E∆M(X(0),0)

(X(0))× e−ελ2(∆)t

And finally,

E∆(X(t)) ≤ 1√
ε
E∆M(X(0),0)

(X(0))× e−ελ2(∆)t o.ε.δ.

34

7 GPU implementation and practical analysis

For this report, we implemented the different notions presented. All the code for gen-
erating the figures can be found in the following GitHub repository: https://github.com/adrien-
lagesse/ICL-Master-Thesis.

Definition 16 (Erdos-Rényi random graphs). Let V ≥ 1 and 0 < p < 1, the
Erdos-Rényi graph of parameters V and p is a graph G = (V,E) with V vertices and
such that for two vertices i ̸= j, are linked by an edge with a probability p

We used Erdos-Rényi graphs to test our code and to visualize how the Dirichlet en-
ergy evolves under the action of a diffusion process.

First of all, it is very important to note that there are major differences between
the graph Fourier transform (hence the energy decomposition) depending on what
Laplacian is used.

Figure 5: Energy Decomposition by frequencies of a Erdos-Rényi random graph. The
Laplacian used is respectively ∆, ∆̄ and ∆̃

We also proved that the Dirichlet energy converges to 0 for the isotropic diffusion.
As a use case, we will consider the dynamics of the normal Laplacian ∆:

Ẋ(t) = −∆X(t)

35

Figure 6: Fourier decomposition of X(0), X(3.3), X(6.6) and X(10)

As we can see, the isotropic diffusion acts as a high-frequency filter on the signal X.

In practice, to reduce over-smoothing, we can say that two vertices interact if and
only if they are very similar and if two vertices are very different we don’t want them
to interact together:

M(X(t))i,j =
1

1 + ||Xi(t)−Xj(t)||22

However, when running this diffusion process on a random graph we obtain the re-
sults of Figure 7.

36

Figure 7: Comparison of the evolution of the Dirichlet Energy for isotropic and
anisotropic positive diffusion.

We can apply theorem 17 to indeed prove that even in this case over-smoothing
occurs. First let show that under the diffusion Ẋ(t) = −div(M(X(t))∇X(t)) the
solution t 7→ X(t) is bounded for the ||.||2 norm:

d ||X(t)||22
dt

=
⟨X(t), X(t)⟩

dt

= 2
〈
X(t), Ẋ(t)

〉
= −2

〈
X(t),∆M(X(t))X(t)

〉
= −2E2

∆M(X(t))
(X(t)) ≤ 0

Hence, because the ||.||2 norm is bounded, we can find ε > 0, such that for all
i, j ∈ {1, ..., V }:

1

1 + ||Xi(t)−Xj(t)||22
> ϵ

We can now apply theorem 17 and see that the Dirichlet Energy of X(t) converge
exponentially fast to 0.

37

References

[1] Chen Cai and Yusu Wang. A Note on Over-Smoothing for Graph Neural Net-
works. 2020. arXiv: 2006.13318 [cs.LG].

[2] Benjamin Paul Chamberlain et al. GRAND: Graph Neural Diffusion. 2021.
arXiv: 2106.10934 [cs.LG].

[3] Ricky TQ Chen et al. “Neural ordinary differential equations”. In: Advances
in neural information processing systems 31 (2018).

[4] Fan RK Chung. “Lectures on spectral graph theory”. In: CBMS Lectures,
Fresno 6.92 (1996), pp. 17–21.

[5] Justin Gilmer et al. “Message passing neural networks”. In: Machine learning
meets quantum physics (2020), pp. 199–214.

[6] Kaiming He et al. Deep Residual Learning for Image Recognition. 2015. arXiv:
1512.03385 [cs.CV].

[7] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph
Convolutional Networks. 2017. arXiv: 1609.02907 [cs.LG].

[8] T. Konstantin Rusch, Michael M. Bronstein, and Siddhartha Mishra. A Sur-
vey on Oversmoothing in Graph Neural Networks. 2023. arXiv: 2303.10993
[cs.LG].

[9] Franco Scarselli et al. “The Graph Neural Network Model”. In: IEEE Trans-
actions on Neural Networks 20.1 (2009), pp. 61–80. doi: 10.1109/TNN.2008.
2005605.

[10] Hugo Touvron et al. Llama 2: Open Foundation and Fine-Tuned Chat Models.
2023. arXiv: 2307.09288 [cs.CL].

[11] Petar Veličković et al. Graph Attention Networks. 2018. arXiv: 1710.10903
[stat.ML].

38

https://arxiv.org/abs/2006.13318
https://arxiv.org/abs/2106.10934
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/2303.10993
https://arxiv.org/abs/2303.10993
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1710.10903

	Introduction
	Graph Neural Network
	Graphs and signals on graphs
	Architecture
	Optimization and training of a Graph Neural Network
	Aggregation function
	Building a Graph Neural Network by stacking layers
	Classification of Graph Neural Network architectures
	From discrete layers to continuous layers

	Properties and limitations of Graph Neural Networks
	Importance of deep Graph Neural Networks
	Limitations of deep Graph Neural Networks

	Spectral Graph Theory and Dirichlet Energy
	Common definitions
	Properties of the Laplacian
	Fourier Transform on Graphs
	Dirichlet Energy

	A mathematical approach of over-smoothing
	A tractable definition of over-smoothing
	Graph Convolution Networks
	Over-smoothing and isotropic diffusion

	Diffusion on graphs
	The diffusion equation
	Anisotropic and isotropic diffusion on the graph

	GPU implementation and practical analysis

