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École Polytechnique, BNP Paribas

Research internship report - 2022

Department: Applied Mathematics Center
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Abstract

Linear models have a long standing in algorithmic trading, they are easy to implement, in-
ference is nearly instantaneous and they rarely over-fit. Nevertheless, these models have one
main drawback: they are incapable of finding non-linear relationship without tedious and
sub-optimal feature engineering. The expressivity of neural networks makes them prime can-
didates to solve this problem but they often generalise very poorly to new samples (i.e that
are not in the training data). During my internship at BNP Paribas, I implemented tech-
niques that were firstly introduced in Computer Vision to solve this problem. On one hand,
we show that learning meaningful representations with Variational Auto-Encoders increases
the compression rate of information while preserving a highly structured and continuous
space (compared to the PCA). On the other hand, using this representation of the market
instead of the raw features improves the prediction score of our indicators.

More concretely, we present a method to reduce by 30% the error rate compared to the PCA
algorithm while maintaining a latent space of high quality. Moreover, using the deep neural
network architecture used here increases the explained variance of the stock market by 19%
compared to linear methods.

Résumé

Les modèles linéaires ont une longue réputation dans le trading algorithmique, ils sont
faciles à mettre en œuvre, l’inférence est presque instantanée et ils sont rarement sura-
justés. Néanmoins, ces modèles ont un inconvénient majeur : ils sont incapables de trou-
ver des relations non linéaires sans feature engineering ; processus fastidieux et sous-optimal.
L’expressivité des réseaux neuronaux en fait des candidats de choix pour résoudre ce problème,
mais ils se généralisent souvent très mal à de nouveaux échantillons (i.e qui ne font pas par-
tie des données d’entrâınement). Pendant mon stage chez BNP Paribas, j’ai mis en œuvre
des techniques qui ont été introduites pour la première fois dans le domaine de la vision
par ordinateur pour résoudre ce problème. D’une part, nous montrons que l’apprentissage
de représentations avec des Auto-Encodeurs Variationnels augmente le taux de compres-
sion de l’information tout en préservant un espace hautement structuré et continu (par rap-
port à l’ACP). D’autre part, l’utilisation de cette représentation du marché au lieu des
caractéristiques brutes améliore le score de prédiction de nos indicateurs.

Plus concrètement, nous présentons une méthode permettant de réduire de 30% le taux
d’erreur par rapport à l’algorithme d’ACP tout en maintenant un espace latent de haute
qualité. De plus, l’utilisation de l’architecture de réseau de neurones profonds utilisée ici aug-
mente de 19% la variance expliquée du marché boursier par rapport aux méthodes linéaires.
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Introduction

Predicting stock prices is a notoriously hard problem that banks and hedge-funds are trying
to tackle. Traditionally, linear forecasting methods such as the ARIMA model (Mondal et al.
[10]) and principle components (Ghorbani et al. [5]) were the most performant statistical
techniques. However, more recently, with the recent advances that happened in deep learn-
ing, researchers have been successfully applying more expressive methods such as Recurrent
Neural Networks, LSTM (Zou et al. [15]) and Deep Q-Learning (Jeong et al. [8]) to predict
the stock market. Most of these methods were developed as auto-regressive predictors, using
the information contained in the path of the time-series to predict its future, nonetheless,
another approach consists of using the mutual information between the different features (i.e
different stocks) to make a prediction.

In this paper, predictors are based on the mutual information between stocks. We use a
deep neural network approach and bring techniques inspired by the recent breakthroughs
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that happened in Computer Vision and Representation Learning to predict stock returns
more accurately. Indeed, in the last few years, Deep Neural Networks became the state-of-
the-art of nearly all Computer Vision tasks. These breakthroughs were made thanks to new
neural network architectures such as Convolutional Neural Network (Bengio et al. [3]) to de-
tect local features in images to the invention of Variational Auto-Encoder (Kingma et al. [9])
to create representations in a continuous latent space. The same architectures are adapted
in this paper to increase the performance of our predictors.

Modelisation of the problem

To model our problem we will use a probabilistic point of view as it is usually used in modern
theories. Let M = (R1(t), ..., RN(t))0≤t≤T be a stationary stochastic process on the probabil-
ity space (Ω = RN ,B(R)N ,P). Each Ri is a stochastic process representing the return of the
stock i ∈ {0, ..., N}. The canonical filtration of M is defined as F = σ(Mt′ , 0 ≤ t′ ≤ t)0≤t≤T .
Moreover, to simplify the problem, we will also consider that M is a Markov process, hence,
Ft = Mt for 0 ≤ t ≤ T . This hypothesis enable us to forget the history of the stock
price, we consider that all the information of the market is contained in its current state. Fi-
nally, the stationarity of M implies that (Mt,Mt+δt) is identically distributed for 0 ≤ t ≤ T ,

hence, two random variables M̃ and M̃δ exist such that (Mt,Mt+δt) ∼ (M̃,M̃δ) for every t.

With these notations, the random variable M̃δ|M̃ contains all the information needed, it is
however intractable to compute its probability law. As a first approximation, we are going to
compute E(M̃δ|M̃) which is the naive Bayes regressor. Considering the class of parametric
functions {fθ | θ ∈ Θ}, this problem can be seen as solving the two following equivalent
propositions:

argmin
θ∈Θ

E
[
(fθ(M̃)− E(M̃δ | M̃))2

]
argmin

θ∈Θ
E
[
(fθ(M̃)− M̃δ)

2
] (⋆)

This model can be slightly modified to add information about the history of stock prices but it
can only work on a fixed size time window. If we consider that Ft = σ(Mt,Mt−δ, . . . ,Mt−(r−1)×δ)
where r ≥ 1 is the length of the time window, the stationary property of M assures us
that there exists M̃−(r−1)×δ, . . . ,M̃ and M̃δ exist such that (Mt−(r−1)×δ, . . . ,Mt,Mt+δt) ∼
(M̃−(r−1)×δ, . . . ,M̃,M̃δ) for every t. In this case, the optimisation problem is:

argmin
θ∈Θ

E
[
(fθ(M̃−(r−1)×δ, ...,M̃)− E(M̃δ | M̃))2

]
argmin

θ∈Θ
E
[
(fθ(M̃−(r−1)×δ, ...,M̃)− M̃δ)

2
] (⋆⋆)
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Chapter 1

Linear models, regularisation and
dimension reduction

Linear models are a simple yet very practical to extract relevant information from the market.
Even if the class of linear functions is sparse, in very high dimensions it can easily over-fit the
data and in this chapter, we test several variants of the classical linear regression algorithm
to establish a benchmark on our dataset. We also analyse the linear relationships between
stocks to have a deeper understanding of the market and quantify its sensibility to some key
stocks. This primary work gives a good intuition of the statistical structure of the market
that will be necessary when working with complex non-linear models.

1.1 Linear regression and over-fitting

Let Clinear = {fθ : x 7→ θx|θ ∈ Θ} where Θ = MN×N(R) be the class of linear predictors.

The solution of (⋆) on the class Clinear is the best linear approximation of M̃δ given M̃δ.

In practice, we don’t have access to the laws of M̃ and M̃δ, instead we have M samples
(M̃1,M̃1

δ), . . . , (M̃M ,M̃M
δ ). An approximate solution of (⋆) is given by:

argmin
θ∈Θ

M∑
i=1

(fθ(M̃i)− M̃i
δ)

2 (⋆ ⋆ ⋆)

In the case of linear predictors, solving (⋆ ⋆ ⋆) can be done analytically, however, this method
is very rigid. We will rather use gradient descent techniques,they are more adaptable and give
a better insight on how the model learns the existing relationships in the data. Moreover,
even if in the general case there is no guaranty, because (⋆ ⋆ ⋆) is a convex problem, we are
assured that gradient descent will converge to the unique solution.

However, even a sparse class like Clinear can produce a solution that over-fit on M sam-
ples. This phenomenon is a direct consequence of the curse of dimensionality (Bellman [2]),
this term describes the fact that as the dimension of the feature of a random variable grows,
the number of points to accurately describe this random variable exponentially explodes. In
the case of stock prediction, it is very important to work with hundreds of stocks because
each stock only brings a very small amount of information.
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When working on the European stock market, several hundreds stocks are traded on a daily
basis on many exchanges. When fitting a linear regression to predict the price of stocks in
the next minute, we are confronted to the problem cited above: the regressor explains very
well the training data but fails to generalise to new data points.

In the following experiments (all experiments in the paper), the dataset is composed of 472
stocks, with historical one minute returns. 140 days trading days are used as the training
dataset and 60 days are used in the validation dataset. There is ≈ 100, 000 samples in the
dataset depicting a complete picture of the European stock market between 2019, 2020 and
2021.

Figure 1.1: As seen in this figure, during training, the linear regression learns to model the
training dataset very well but fails to understand general statistical relationships in the stock
market. In the beginning, the linear regressor learns things that are true in the validation set
but then it prioritize noisy information in the training dataset that hurts the performance in
the validation dataset.

1.2 A variant of the linear regression model: Elastic-

Net

To solve this over-fitting problem, Elastic-net (Zou et al. [14]) was introduced. It incorporates
ideas of the Lasso and Ridge regression to regularize the model and to select important
variables only. The parametric class remains unchanged, but, the optimisation problem is
slightly modified. Two new terms are added. Let λ1 > 0 and λ2 > 0 in the modified (⋆)
problem:

argmin
θ∈Θ

E
[
(fθ(M̃)− M̃δ)

2
]
+ λ1||θ||1 + λ2||θ||2 (1.1)

This forces the parameters to be smaller and the level of that force is set by λ1 and λ2. The
effect of each one of those parameters are to reduce over-fitting but they act in a different way.
The L1 norm makes the model choose a few features while ”forgetting” the others resulting
in a sparser model. The L2 norm finds relationships between all the features. Applying
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Figure 1.2: R2-score of Elastic-Net with different regularization parameters

those modifications have a huge effect on the results of the linear regression. The resulting
predictor is generalising very well to new data-points, meaning that meaningful linear rela-
tionships are found in the data. However, the choice of λ1 and λ2 is very important and have
a big impact on the performances as shown in 1.2. If these hyper-parameters are to small
the model will over-fit, however, if they are to big, the model will only not be able to find
all the relationships in the data (minimizing the L1 and L2 loss will be more important than
minimizing the prediction loss).

−→ The results of Elastic-Net will be used as a benchmark in the rest of the paper. When
using non-linear methods such as Neural Networks, just using L1 and L2 regularisation will
not work and the rest of the paper will present ways to circumvent this problem.

1.3 Dimension reduction and PCA

As the results of Elastic-Net prove, predictive linear relationships exist on the stock market.
Yet, the amount of information is very small compared to the noise. Another easier problem,
gives useful insights on the stock market to build a good intuition and simplify the prediction
problem. Instead of analyzing the predictive relationships, we can learn the static information
between different stocks. With the Principal Components Analysis algorithm (Abdi et al.
[1]), it is possible to learns these linear relationships existing in the stock market. This
algorithm can then be used in several different ways: to reduce the dimension of the feature
space, to create a different representation of the data or to help us understand some key
elements of the market structure.

Theorem 1.1 (Principal Component Analysis).— Let X = (X1, ..., XN) be a random
variable on RN , there exist a bijective orthogonal matrix P such that XP = (X̃1, ..., X̃N)
where Cov(X̃i, X̃j) = 0 for all i ̸= j and Var(X̃1) ≥ · · · ≥ Var(X̃N). The columns of P are

7



the principal components of X.

As an orthogonal matrix, P can be seen as a change of basis. The new space have useful
properties: the coordinate are linearly independent and the information contained in each
coordinate is decreasing (the first coordinates explain well X). This structure on the new
space gives a canonical way of reducing the dimension of the feature space, choosing only the
first N∗ < N coordinates assure us that the most information is retained and that only the
less meaningful coordinates are dropped.

In practice, it is very easy to calculate P for relatively small datasets. An analytical method
(Abdi et al. [1]) exists to compute the matrix P and also the variance of X̃i for all i. Let
X = (Xi,j)i,j∈{1,..,M}×{1,...,N} ∈ MM×N represents M observations of N features.The empirical
covariance matrix is equal to C = 1

M−1
XTX, this matrix is a symmetric matrix so it can be

decomposed as C = P TDP = P−1DP where P is an orthogonal matrix and D is a diago-
nal and positive matrix. The columns of P are the principal components and Var(X̃i) = Di,i.

Figure 1.3: Cumulative explained variance of the PCA on the stock market.

When applying PCA on the stock market, a few principal components are able to explain
a lot of the information but if we want retain a lot of information, we will still need many
principal components. In 1.3, we can see that 5% of the components explains 30% of the
variance but if we want to retain 80% of the information we need 75% of the components.
This is a consequence of the high amount of noise in the stock market, most of the variance
is due to uncorrelated noise.

Looking at the composition of the principal components gives an understanding of the statisti-
cal structure of the stock market. The first principal components encode a lot of information
and looking at their composition is also very useful to understand what stocks drive the
market. On one hand, the stocks that have a high weight in the firsts principal compo-
nents will contain information that is useful to describe all the market, on the other hand,
stocks with less weight in the firsts components and have high weights in the last components
are very well explained by other stocks but doesn’t bring a lot of information on other stocks.
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The PCA matrix 1.4 shows that there are two kinds of principal components, the first columns
contain a lot of information and are composed of significantly many stocks, we can suppose
that they act as an index, representing a general state of the market. The rest of the matrix
is stratified, each component contains information on a few stocks only. As stated before, the
order in which the stocks appear is linked to the amount of information that they explain.

Figure 1.4: Visualisation of the matrix P, each column of this matrix represents the compo-
sition of a principal component with on top the explained variance of this component.

In the case of the European stock market, 1.5 summarises the most important stocks in the
first components. We can see that many of these stocks are from big companies such as
BNP Paribas, GSK, Société Générale and Diageo. Moreover, the banking sector is very well
represented, and the countries that are represented are mainly the UK and France. Hence,
we can assume that the banking sector represents well the global trend of the market and
that some countries have a bigger impact than others on the market.
Because the PCA have this property of sorting the useful information and gives us a way to
reduce the dimension of the problem, it can be seen as a representation learning technique
and a manifold learning method to. This means that the PCA is able to extract a new rep-
resentation of the data by projecting it on a lower dimension linear plan. The power of the
manifold learning lies in the fact that even if the data lives in a N -dimensional space, it is
possible that the data have a lower intrinsic dimension N∗. The projection on the manifold
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Figure 1.5: Top ten most weighted stocks for the three first principal components (from top
to bottom)

is forgetting all these useless dimensions, giving a more compact representation of the data.
In the particular case of the PCA, the manifold is restricted to N∗-dimensional plans. Hence
the PCA is only able to project data in a linear subspace of the universe.

Working with the representation given by the PCA is very useful to solve (⋆), working in
a lower dimension reduce the risk of over-fitting the data and gives more predictor that
generalise well to new data points. Moreover, the PCA has the great property to forget
unimportant information, information that is useless to explain the current state of the mar-
ket.

(a) Reduced dimension regularization
only

(b) Reduced dimension and L1 regular-
ization

Figure 1.6: R2-score of a linear model with dimension reduction
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However, in practice, a good balance must be found between reducing to much the dimension
of the space and keeping useless components. In 1.6, the results of incorporating the PCA
in the predicator are shown.

1.4 Limitations

As seen previously, a simple linear regression cannot learn on its own, the relationship between
M̃ and M̃δ because of the high dimensionality of the data. Regularization techniques and
dimensionality reduction with PCA improve the performances but they assume a big prior
on the structure of the data and the model:

1. L1 and L2 have no prior meaning, they just artificially limit the size of the weights to
have a smoother function

2. the PCA assumes that M lies in a linear subspace of Ω.

In the next chapters we will see how we can implement other ways to control the model
and prevent it from over-fitting while also capturing non-linear information. Deep learning
techniques developed for Computer Vision can be applied to the stock market to learn more
expressive models that generalise well to new data points and enable better prediction of
stock returns.
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Chapter 2

Bayesian inference and structured
latent space

Linear models augmented with the methods presented in Chapter 1 are not able to use the
non-linear relationships that exist between the different stocks. To solve this problem, neural
networks are well adapted but they tend to over-fit more easily than a linear regression. With
only L1 and L2 regularization techniques the network is not able to perform well but using
the ideas introduced by the PCA it is possible to find meaningful non-linear information
in the data. By considering that the observable event of Ω is just the manifestation of a
more tractable event in another space, it is possible to create a representation of each state
of the market that only contains the necessary information without noise. From this latent
representation, predicting the next state of the market is easier and neural networks can
be used. This chapter describes how to create this latent space and how to learn good
representations. To be able to solve this problem, we will study two types of neural networks
described in 2.1 that are massively used in Computer Vision and can be adapted to the stock
market.

(a) Auto-encoder (b) Variational auto-encoder

Figure 2.1: Relationships between observable space and latent space
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2.1 Auto-encoders: a non-linear generalization of the

PCA

Auto-encoders (Fig 2.1a) are a special type of neural networks that learn a mapping between
the observable space Ω and the latent space Z by creating an information bottleneck in the
network and then minimizing the reconstruction cost. This forces the network to choose
what information to keep and what information to forget. This problem can be written as :

argmin
θ,ϕ

E(||M̃ − gϕ ◦ fθ(M̃)||2) (2.1)

In this equation, fθ is called the encoder and gϕ is the decoder. The information bottleneck
in this case can be build in several ways such as:

1. Forcing the dimension of Z to be smaller than the dimension of Ω, this will force the
encoder to compress the data.

2. Forcing a criterion of sparsity on Z either by using the L1 norm or the Kullback-Leibler
divergence between the outputs of the encoder and a Bernoulli of parameter p > 0.

An interesting fact is that the PCA algorithm is closely linked to auto-encoders, indeed, the
spaces created by the first N∗ < N columns of the projection matrix is the same space that
the latent space of a linear auto-encoder with a bottleneck of dimension N∗. The power of
an auto-encoder compared to the PCA is that it can learns non-linear mappings from Ω to
Z, this means that if the intrinsic surface of M̃ is not a plane, the auto-encoder will be able
to model it whereas the PCA will approximate it by a plane, losing valuable information
and adding noise in the representation. However, by having the possibility to extract new
relationships in the data, the risk of over-fitting is also increased and solving (2.1) is harder.
To solve these problems, techniques that were invented for Computer Vision can be applied
and will be discussed in the following sections.

Figure 2.2: Auto-encoder architecture
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2.2 Residual networks

As stated before, the problem of stock price prediction is particularly tough due to the high
amount of noise, this means that it is very hard to extract meaningful non-linear informa-
tion. Networks must be very deep to capture this information and this makes training such
models harder. Not only having deeper networks increases the risk of over-fitting, it can
also be very hard to find the optimal parameters (mode collapse). Having many layers in
the network creates a well-known problem: vanishing and exploding gradients. This makes
the training very unstable and even fitting training data can be very difficult. Having a lot
of trainable parameters makes the loss surface very irregular and it is simple to be stuck in
a local minima. The Residual network architecture solves this problem. It was introduced
in Computer Vision to be able to have networks with tens of layers(the ResNet [6] network
have 156 layers and won the Imagenet competition). The idea is to add skip connections
to facilitate the propagation of the gradient through the different layers of the network as
described in Fig 2.3. With such connections, the network can choose its own depth during
training, trying to add more and more layers as the epochs pass by. This has the effect of
training the network without collapsing due to gradient vanishing due to the depth of the
layers.

Figure 2.3: Skip connection in residual networks

Not only does it facilitate the propagation of the gradient in the network but the loss surface
is also smoother (2.4). The risk of being stuck in a local minimum drastically decreases and
the training of the network is a lot more stable.
By adding skip connections in the encoder and the decoder, it is possible to train very deep
auto-encoders that are very powerful compared to PCA and can learn a better representation
of the stock market.
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Figure 2.4: Loss surface

2.3 Variational auto-encoders

Auto-encoders are very powerful yet in their current formulation we have no control over the
latent space structure which makes it very hard to use the representation for other tasks such
as predicting the next state of the market. To solve this problem Variational Auto-encoders
(Figure 2.1b) were introduced (Kingma et al. [9]). By using VAE’s the encoder and decoder
must learn a continuous latent space that is much more robust than a discontinuous one.

Variational Auto-encoders are auto-encoders that are placed in a probabilistic setting. Con-
sider the probability space (Z × Ω,B(Z × Ω),P), in this space, the prior distribution is
pZ : z 7→ p(z), the likelihood of x ∈ Ω given z ∈ Z is p(x|z) and the posterior of z ∈ Z
given x ∈ Ω is p(z|x). Here x 7→ p(·|x) is the probabilistic encoder mapping an observation
to a distribution over the possible latent representations that can explain it and z 7→ p(·|z)
is the probabilistic encoder mapping a representation to a distribution over the possible ob-
servations. Let x 7→ qϕ(·|x) be a parametric model of the probabilistic encoder (in practice
qϕ(·|x) ∼ N(µϕ(x), σϕ(x)).

Figure 2.5: Arcitecture of a Variational Auto-encoder

Training a variational auto-encoder means finding the best probabilistic encoder, hence min-
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imizing the Kullback-Leibler divergence between the parametric encoder and the true one:

KL [qϕ(·|x)||p(·|x)] = Ez∼qϕ(·|x)

[
log(qϕ(z|x))− log(

p(x|z)p(z)
p(x)

)

]
(2.2)

= Ez∼qϕ(·|x) [log(qϕ(z|x))− log(p(x|z))− log(p(z))] + Constant

= −Ez∼qϕ(·|x) [log(p(x|z))] +KL [qϕ(·|x)||pZ ] + Constant

In addition, by defining z 7→ pθ(·|z) as the probabilist decoder, the VAE objective is:

argmin
θ,ϕ

−Ez∼qϕ(·|x) [log(pθ(x|z))] +KL [qϕ(·|x)||pZ ]

Finally, in practice for solving the problem (⋆), the following parametric models are used:

qϕ(·|x) ∼ N(µϕ(x), σϕ(x))

pθ(·|z) ∼ N(µθ(z), σθ(z))

Hence, the loss is defined as:

L(θ, ϕ;x) = ||x− µθ ◦ µϕ(x)||2 +KL [σϕ(x)N (0, I) + µϕ(x)||N (0, I)]

This form of the loss is well-suited for gradient descent minimization.

To control the regularity of the latent space, we will use a slightly modified version of the
VAE called the β-VAE (Higgins et al. [7]). A coefficient β > 0 is added to control the KL-
divergence term. The final loss function applied during training is :

L(θ, ϕ;x) = ||x− µθ ◦ µϕ(x)||2 + β ×KL [σϕ(x)N (0, I) + µϕ(x)||N (0, I)]

(a) Discontinuous latent space(b) Well-structured latent space (c) Over-regularized latent space

Figure 2.6: Continuity of VAE’s latent spaces

Yet to be able to use backpropagation in the network, it is necessary to use the reparametriza-
tion trick. It is impossible to backpropagate gradients through a random node so to solve
this problem, as seen in 2.5, a random sample is generated from N (0, I) and then multiplying
it to the standard deviation and adding the mean.
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2.4 Invariant and equivariant properties of the latent

space

It is very hard to train such a variational auto-encoder due to the high dimension of the
problem, the low level of information in the signal and the limited dataset size. Reducing
the size of the class of possible function can facilitate training the model.

Definition 2.1. Let f : Ω 7→ Ω and let G be a subgroup of Aut(Ω):

1. f is invariant under G if for all g ∈ G and all x ∈ Ω then f(g ∗ x) = f(x)

2. f is equivariant under G if for all g ∈ G and all x ∈ Ω then f(g ∗ x) = g ∗ f(x)

Using geometric priors in the network architecture such as invariants and equivariants can
facilitate the training process of networks and Bronstein and al[4] proved that many state-
of-the art neural networks such as Convolutional Neural networks and Transformers can be
explained from their invariant and equivariant properties.

In the case of stock market prediction, it is reasonable to assume that M̃ 7→ M̃δ is equivara-
iant under G = {Id,−Id}. Moreover, if we assume that the predictor verifies the property

α× M̃ 7→ η(α)× M̃δ for all α > 0, we break the prediction problem in two parts:

1. Finding the optimal η such that η(||M̃||) = ||M̃δ|| and η(−x) = −η(x)

2. Finding a function M̃ 7→ M̃δ

||M̃δ||
that is invariant under G = {x 7→ αx | α > 0}

In the case of the auto-encoder network, this symmetry can also be implemented by forcing
a structure on the latent space. The space Z = RN∗

can be structured as R+∗ × SN∗−1. The
norm is explicitly encoded and the network only learns a norm independent representation of
the market state. Moreover, the first point will make sure that the latent space is point-wise
symmetric with respect to the center of the space.

2.5 Results

With these methods, it is possible to learn robust non-linear relationships between differ-
ent stocks. When using auto-encoders with the different modifications that are presented
previously it is possible to beat by a large margin the reconstruction score of the Principal
Component Analysis.Those results are summarised in Table 2.1.

With the PCA only linear relationships can be used and we see that as soon as we add non-
linearity by working with an auto-encoder the reconstruction score rises quickly. However,
it is difficult to scale-up the auto-encoder architecture to capture more information. Using
the natural symmetries of the stock market, we are able to solve this problem and scale the
auto-encoder to 5/8 layers.
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PCA Residual auto-encoder Symmetrized auto-encoder
1 layer 51.7% 58.9% 61.2%
3 layers x 56.7% 64.6%
5 layers x 52.2% 67.1%
8 layers x x 65%

Table 2.1: Comparison of the reconstructing power (R2-score) of several auto-encoders.

As stated before, VAE’s enable us to learn a better representation of the data (more contin-
uous) without losing a lot of the reconstruction power. In the Table 2.2, those results are
presented. By losing only 2% of the reconstruction score, we can obtain a very regular latent
space.

β = 10−7 β = 10−6 β = 10−5 β = 10−4 β = 10−3

R2 − score 65% 64.9% 64.5% 64.4% 63.2%
KL Divergence 2140 720 240 170 90

Table 2.2: Results of the variational auto-encoder
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Chapter 3

Prediction on the latent space

Building a high quality latent space highly facilitates the learning process of neural networks
and makes enables the predictor to understand non-linear and complex relationships that are
present on the market. In the previous chapter, we were able to create with a Variational
Auto-encoder and by leveraging symmetries this regularized latent space. In this chapter, we
will show how we can use these representations of the market to improve our prediction score
and we will discuss the different ways to generalise this architecture to new tasks (prediction
at other horizons, predicting the volatility, etc..)

3.1 Predictive structure of the latent space

Even though the latent space was created by learning only instantaneous relationships in
the stock market, it is very useful to find temporal dependencies in this space rather than
working directly with the raw data from the stock market. Moreover, the continuity of the
latent space that can be achieved with a VAE assures us that two points that are near each
over in the latent space describe similar market states, meaning that they will likely share
the same evolution in the future.

For example, by analysing the activation of a stock on the latent space (i.e where does the
state of market lie in the latent space when the returns are positive) at time t and t + δt,
what kind of market states will likely yield high returns. In Fig 3.1, we present the case of
the GlaxoSmithKline. We see that the future price of GlaxoSmithKline depends on the its
representation.

Using this representation in a K-nearest neighbors algorithm is able to predict pretty well the
evolution of the stock market, with this method we reach a score of 0.3%. The main problem
that stops us from having better scores is that in low dimension to much information is lost
while in high dimension the K-nearest neighbors algorithm is not suited.

Working on the latent space let us use very rich neural networks compared to the raw data.
The representations are in a lower dimension and moreover, the continuity of the latent space
prevents the neural network from over-fitting on the data. This neural network can be seen
as a transformation on the latent space.
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(a) At time t (b) At time t+ δt

Figure 3.1: Activations of the GlaxoSmithKline stock on a 2-dimension latent space (embed-
ded in R3)

3.2 Transfer learning

Learning a simple problem is often a good idea to initialize the model, rather than having
to learn all the important information from a difficult task, a simpler task is used to learn
some important relationships in the data, then we use this network and the trained weights
as the starting point for the training on the main task. This simple idea is one of the most
powerful idea in Deep Learning. Many tasks are closely related either by the information
they need to predict an output or by the similarity of the task. This means that we can
share information between several task. This method is called transfer learning (Tan et al.
[12]) and is used in all of the state-of-the-art deep learning model because enables the use of
self-supervised learning. The reconstruction task is a self learning task, hence is particularly
suited for pretraining the model.

3.3 Multi-task learning

Multi-task learning (Zhang et al. [13]) is a special training paradigm; as stated by Zhang:
Multi-Task Learning (MTL) is a learning paradigm in machine learning and its aim is to
leverage useful information contained in multiple related tasks to help improve the general-
ization performance of all the tasks. This can help us reach better results. For example, by
learning to reconstruct the current market state and predict the next one, it is easier to learn
interesting relationships because they should be useful for all tasks.

Learning the reconstruction and prediction task in parallel forces the latent space to contain
information that are helpful to predict the future, meaning that with a smaller latent dimen-
sion it is possible to keep most of the prediction information.

With this learning paradigm, it is possible to generalise the tasks that our network can solve.
By implementing the prediction task for several time horizons, we will improve the results
on all tasks.
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3.4 Architecture and training

To implement this method we used Pytorch (Paszke et al. [11]) and leverage a GTX 1000
GPU for faster training. Using the Multi-task learning paradigm, we structured the neural
network as describe in Fig 3.2. The encoder and the decoder each contains 5 layers with
skip connections while the predictor is a feed-forward neural network with 3 layers and skip
connections. The encoder learns to work with a norm independent representation of the
market state, but the predictor and the decoder uses the explicit norm of M̃ to reconstruct
and predict M̃δ. The ± symmetry (invariance under G = {Id,−Id}) is implemented by data

augmentation: we duplicate the dataset by applying x 7→ −x on the samples of M̃ and M̃δ.

Figure 3.2: Architecture of a network that learns to reconstruct the instantaneous market
state and predict the next one.

The training procedure leverage two training paradigms, firstly we train for 1000 epochs the
variational auto-encoder only to learn a suitable representation of the market, then we jointly
train the variational auto-encoder with predictor for 8000 epochs and finally we only train
the predictor for 1000 epochs. During the second part of the training, we enable the predictor
loss in the variational auto-encoder loss but we also scale it with a small factor, this have
the effect to modify the latent space so that information that is useful for the prediction are
forced to be present in the representation.

3.5 Results

Using the architecture and the training principles described in this chapter, we were able to
significantly improve the prediction score of our model while also facilitating the training of
the neural network. We showed also that learning a regularised space directly affects the
results.

Prediction R2-Score Improvement
Elastic-Net (Baseline) 0.56% -
AE + Linear Predictor + no MTL 0.57% + 2%
VAE + Linear Predictor + no MTL 0.62% + 10.7%
Final Model 0.668% + 19.3%
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Conclusion

The results obtained during my internship prove that non-linear relationships on the Eu-
ropean stock market are not negligible. Deep neural network are able to leverage these
relationships to improve the results, but working with a simple Multi-Layer Perceptron will
over-fit.

Computer Vision techniques such as Variational Auto-Encoders and Residual Networks are
in practice necessary to learn generalizable relationships. Moreover, we showed how helpful
can symmetries be for training, particularly on the stock market due to the high amount of
noise.

Implementing these methods enabled us to increase by a big margin the quality of the latent
space that the model learns (in quantity of information and in regularity/continuity). Then
using this representation facilitated the training and helped increase the prediction power of
the model.

Finally, the framework developed during my internship is highly generalizable to new tasks
and to new signals (i.e new features to do the prediction). Indeed, firstly it is possible to add
new features (new stocks/indices, fundamental data, etc..) without increasing the dimension
of the problem (we choose a reasonable size for the latent space), and secondly, with the
multi-task training paradigm, it is possible to solve a many task concurrently.
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